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Chapter I: Introduction

The Relativistic Vlasov-Maxwell (RVM) system is a nonlinear system
of first order partial differential equations that models the time
evolution of a collisionless plasma, e.g. a high temperature, low density
ionized gas. Numerical computation of solutions of this system is
prohibitively expensive in part because of the six-dimensional phase
space for the Vlasov density function. For computational feasibility, we
consider a version (RVM) in which the Viasov density f depends on one
spatial variable, x, and two momentum variables, vy and
vo. This is the simplest version of the problem which retains the
hyperbolic structure of Maxwell's Equations and for which there is a
nontrivial magnetic field. We treat the case of a single species of
particles with distribution function f, in the presence ot a neutralizing
background with density n(x). The electric field is given by
E(t,x)=(E1(t,x), Ea(t,x)) while the (scalar) magnetic field is denoted
B(t,x). The speed of light is ¢, and we assume that the rest mass and
charge of the particles are both 1. The particles move under the action of
their self-induced Lorentz force, F=(E+c40xB), and the
objective is to track the simultaneous evolution ofAthe density and the

fields, which satisfy the following Cauchy Problem:

Af + V13xf + (E+C'BMV)-Vf=0

(1.1) (RVM) E1=-47j; oxEy=4mp
diB=-coxE> diE2=-cdxB-4rj>




e . 01
where v = v(1+c2|v|2)-1/2 s the relativistic velocity and M = (_1 0 )
with Cauchy data

f(x,v,0) fo(x,v) 20

Ea(x,0) = Eg(x)

B(x,0) = B9(x)
The charge and current densities, p and j, are defined by

p(tx) = If(t,x,v)dv- n(x)

jtx) = J.\'/\f(t,x,v)dv

All data functions are taken to be smooth and compactly supported, with
f0 > 0. The background density, n(x), in addition to being smooth and of

compact support, is neutralizing in the sense that
[p0x)dx = 0

X
We take Eq(0,x) = 4n jp(o,y)dy as initial data for E;j.

In [2], Glassey and Schaeffer proved global existence of smooth solutions
of this problem, their main result being that fO e C:,(R3)_ and

Eg, Boe C;(R) imply the existence of a global, C! solution (fE,B) that
satisfies the initial values f(0,x,v) = fO(x,v), E2(0,x) = Eg(x), B(0,x) =

B9(x) and whose components f,E, and B are compactly supported V t> 0.




In [3], they proved convergence of a particle-in-cell method for
approximating solutions of this system. Their scheme (as well as other
typical schemes such as that used in [1] ), is limited by the constraint
imposed by the Courant-Friedrich-Lewy (CFL) condition on the size of
allowable time steps, resulting in enormously expensive computations.
CFL requires At < Ax/c, since the speed of light, ¢, is the propagation
speed for the hyperbolic Maxwell system satisfied by E2 and B. However,
there are regimes in which this restriction is actually far too severe.
When the electromagnetic quantities vary slowly, it may be possible to
replace Maxwell's equations with simpler models that are eilliptic in
nature, hence may lead to cheaper computation by allowing larger time
steps. ( See for example [5]. )

In this paper, we propose a modification of (RVM), denoted (RVM™),
that employs changes of this nature. The modifications are suggested
geometrically by the form of the integral representations of the Maxwell

fields E» and B which result from solving the 1-D Maxwell system

{ 0tE2 + coxB + 4mj2 = 0
0B + cdxE2 =0

The Riemann invariants are (E2 + B) and (E2 - B), and we find
1r_o 0
(1.23) E2(tX) = 3 [Ea(x-ct)+E5(x+ct) +BO(x-ct)-BO(x+ct)] -
2n€ [i2](t,x)
1r-0 0
(1.2b) B(t,x) = 5 [Ez(x-ct)-E2(x+ct)+B°(x-ct)+B°(x+ct) ] -

2r€ Tj2] (t,x)




t

where €% [2](tx) : = j [i2¢5.x-(t-2)) £ ja(r,x+c(t-1))] o
0

Treating the speed of light ¢ as a parameter and allowing it to grow has
the effect of "flattening out” the cone integrals appearing in (1.2).

Formally, as ¢ — «, the cone integrals become purely spatial integrals and
we are led to alternate field operators resulting in approximate fields Eg

and B given by

(1.3a) Ea(t,X) = 15[Eg(x-ct)+Eg(x+ct)+B°(x-ct)-B°(x+ct)] -
21€2[] 2](t,x)
~ 1r.o0 | 0
(1.3b) Bitx) =3 [E2(x-ct)-Ep(x+ct)+BO(x-ct)+BO(x+ct)] -

27€°[] 2)(t,x)

Q|
O |-

X (-]
where E501 al(t,x) : = J ja(ty)dy j j 2(t,y)dy
-00 X

and j~(t,x) = j W(t,x,v)dv is the current density obtained from
Rz

the density function f of the modified problem. Note that the same
Cauchy data appears in both (1.2) and (1.3), which is natural given that the
approximation involved only the integral operators. If we omit the data
terms in the expressions for E» and B, what remains, e.g. the integral
terms, are solutions of Maxwell's equations as modified with the Darwin
and quasi-electrostatic approximations. In the one-space, two-momenta

case, this means neglecting the oB and oiE2 terms in (1.1). However, if we



make these simplifications of Maxwell first, the representations of the
solutions of the resulting system will not contain these data terms. As
will be shown later, the presence of these terms results in better (e.g.
1/¢2 vs 1/c) convergence of the solutions of the two problems for small
time. We propose the following modified version of (RVM):

(aﬁ + 013,(? + (§+C'1§MC)-VVF = 0

(1.4) (RvM=) {0 = fo(xv) e C o(R3)

Eo(x) & BO(x) e Cy(R)
\

The data, f0, Eg , and B9 are considered known. We also assume a

smooth, compactly supported, neutralizing background- density n(x), as in

(RVM). Charge and current densities are given by

p(tx) = f?(t,x,v)dv - n(x)
R2

i (tx) = J vi (t,x,v)dv
Rz

The electric and (scalar) magnetic fields are given by

X
Ei(tx) = 4n fp"(t,y)dy

- 00




Ez(t,X) = 1E[Eg(x-(;t) r Eg(x+ct) + B9(x-ct) - B°(x+ct)]

- 2n E5[7 2)(t,x)
~ 1r0 0
Bitx) = Z[Ez(x—ct) - Eo(x+ct) + BO(x-ct) + B°(x+ct)]

-2r €°[7 21(t,x)

We assume existence of a global, C! solution (?, E, B ). The proof is
straightforward and similar to the existence proof for the 1-D Viasov
Poisson system, once the a-priori bounds obtained in Chapter Il are in
hand.

In part | of this paper, we will show that solutions of the modified
problem converge in a pointwise sense to solutions of the unmodified
problem at the asymptotic rate of 1/c2. The main result of part | is the

following:

Theorem : Let (f,E,B) and ( f,E,B) be the global, C! solutions of (RVM)

and (RVMT) respectively, satisfying the same Cauchy data

foe C,(R3) and E5,BYe C)(R).

For ¢ sufficiently large compared to the initial data, there
exists a non-decreasing function D : [ 0, =) - [0, «), depending

on the initial data but not on ¢, such that




- D(t
) - Tl < {2—1 for all t> 0

Part Il of the paper describes numerical experiments designed to
corroborate this convergence rate and demonstrate explicitly the value of
the modified problem as an approximation to (RVM).

As described in Chapter VI, a particle-in-cell scheme was coded for
(RVM~) and output was compared with that obtained using the program
from [4]. Besides demonstrating the 1/c2 convergence rate of the
solutions of the two problems, the results clearly show that the modified
problem does not suffer from the CFL limitation - we achieved the same
accuraCy as the Glassey Schaeffer scheme with significantly larger
timesteps. |

Additionally, to demonstrate the value of the inclusion of the data
terms in the solution of the modified problem, we compared output with a
version of the modified problem in which these terms were omitted, i.e.
where the expressions for éz and B are solutions of the system obtained
by making the Darwin and quasi-electrostatic modifications of Maxwell's
equations. We found that including the data terms improved the accuracy
of the solutions with very little increase in computation time. These
results are discussed in more detail in Chapter VIII.

Throughout this paper, we will use the following conventions and

notation:
-c is the speed of light. We always assume ¢ 2 1.

‘D will denote a generic positive constant which depends on

the initial data, but not on c.



-D(t) will denote a positive, non-decreasing function with

domain [0,).

-Partial derivatives will be denoted by subscripts. ( for

example Jx =3 )

-We will frequently abbbreviate the arguments in the

expressions for the characteristics, writing for example
X(s) and V(s) for X(s,t,x,v) and V(s,t,x,v).

‘We will write f(t) for f(t,",-) and f(t,x) for f(t,x,*).

-Finally, we will use the following norms:

For a scalar-valued function g=g(t,x,v),

Hall., = sup { lg(t.x,v)] such that xe R and ve R2}
llg ]l = sup {lg(t.x,v)| such that t > 0, xe R and ve R?}

Hotil,, = Hatil,, + 11Exa)dil,, + {Vva)dil,
= lall,, + Exa) Ol .+ 11(3,,9) Dl .+ 113, gD,

For a vector-valued function H = H(t,x) = (H(t,x),Ha(t,x)),

IH®II, = 1H1Oll,, + [[H2001,




Chapter 1l : A-priori Bounds for the The Unmodified Problem

In their proof of global existence of smooth solutions for (RVM) with
¢ = 1, Glassey and Schaeffer used a standard iteration scheme,
convergence of the iterates being assured once a-priori C! bounds on f, E,
and B are known. For the purposes of this paper, we need corresponding
bounds for the case where ¢ appears as a parameter (¢ > 1). In particular,
we must determine which bounds can be taken to be independent of c. We
assume, for any fixed c > 1, existence of a global-in-time C' solution (f,
E, B), compactly supported V t > 0. Proof of existence is omitted, since
the argument would be essentially identical to that in [2], using the a-
priori bounds we will find in this chapter, which are obtained following
the methods in [2].
A. Density Estimates
Define X(s,t,x,v) and V(s,t,x,v) by

dX(s,t,x,v) = Vi(s,t,x,v)
(2.1a) ds

X(t,t,x,v) = x

d V(s,t,x,v) = E(s,X(s))+c"1B(s,X(s))MV(s)
(2.1b) ds

V(t,t,x,v) = v

Here, X(s) and V(s) abbreviate, respectively, X(s,tx,v) and
V(s,t,x,v). We immediately have a uniform bound on f{t,x,v),

since




d f(s, X(s,t,x,v), V(s,t,x,v)) = 0 by Vlasov, so

ds
fit,x,v) = f(t,X(tt,x,v), V(itxv))
= f(s,X(s,t,x,v), V(s,t,x,v))
= f(0,X(0,t,x,v), V(0,t,x,v))
= f0(X(0,t,x,v), V(0,tx,v))
= sup {f(tx,v): xe R,ve R2}= || f0]|

B. Charge Conservation

Lemma [2.1]: [[ f(tx,v)dvdx = [f fo(x,v)dvdx

Proof : Integrating the Viasov equation in v yields
A A
[ afdv + [ viauidv + [ [(E+c'BMV)-V\fldv = 0

or op + Oxji + J[(E+C'1BMC)-va]dv =0

Lemma [2.2]: (E+Cc-'BMV)-Vyf = Vy-[(E+c-1BMV)f]
Proof: Vy-[(E+c'BMV)] = 3y [(E1+c-1BV2)f] + dy,[(E2-c-1Bv4)f]

= (E1+C1BV,)dy, f + c1fB3y Vo

+ (E2-cBV1)dy,f - 1By, Vs

= (E+c1BMV)-Vyf + c1B(3y,V2-dv,v1)
\ \'J
2 - av 1

2
.\/1 +C'2(vf+v§) .\/1 +c*2(vf+v§)

10

A A
But av1V2 - av2V1 = av1




= 0 and the claim is verified.
Using the compact support of f and the divergence theorem then yields
(2.2) otp + dxj1 = 0

Now j; is compactly supported in x Vt > 0, as follows from the definition

of j and the compact support of f. Integrating (2.2) over x then gives

a [p(tx)dx = 0

= af 1] fitx,v)dv)-n(x)ldx = 0
= [ []Htx,v)dv-n(x)ldx = const
= J 1] ftxwav nldx = [ [ #0,x,v)dv-n(x)}dx

= | 1] ©(x,v)dv-n(x)]dx

= JJ ttxvydvdx = [[fO(xv)dvdx v t>0, which proves the

lemma, and establishes global-in-time charge conservation.

C. Field Estimates

(1) Uniform Bound for E4

We first establish that E¢(t,x) is uniformly bounded Vt>0 and Vx,
with a bound that is independent of c. Integrating Gauss' Law for E; with

respect to x, we get

11




X
E1(t,x) = 4n jp(t,y)dy + const

- 00

and hence

E1(0X) = 4n [p(0,y)dy

-00

since the constant has been chosen to be 0 already. (the only choice
resulting in a finite energy solution). Therefore,

X
Ex(tx) = 4 [p(ty)dy

- 00

X
=4n [ [ [itty,v)dv-n(y)ldy

-00

Using the non-negativity of f and lemma [2.1], we have

| Es(tx) | < 4xff fity,v)dvdy + 4x In(y)| dy

= 4z[ fo(y,v)dvdy + 4x[ In(y)| dy

= sup | Ei(tx)| < D,

x, t>0

by assumptions on the data, and we have a bound on E; that is independent

of t, x, and c.

(2) Compact Support of £1(0.x)

Let £ be chosen s.t. fO(x,v) =0 and n(x) =0 Vx st |x| >&, and consider

12




X
E1(0.X) = 4n [ [ Jfo(y,v)dv-n(y)]dy

- 00

Suppose x >&. Then

X

an [(Jrory.vdv-niy))ay = Jf P(yvdvdy - [ niy)dy = 0

-00

by the assumption of global neutrality. If x < - §,

X X
[]ymdvdy = 0 = [ n(y)dy
= Ei(Cx) =0 for x| > &

(3) Uniform Bounds for Eo and B

We employ integral representations

(2.3a) Ea(tx) = 15[Eg(x-ct)+Eg(x+ct)+B°(x-ct)-B°(x+ct)]

t
-4n [ [izt.x-c(t-1)) +j2(t.x+c(t-1))1d7
0

(2.3b) B(t,x) = 5 [Ep(x-Ct)-Eg(x+Ct)+BO(x-ct)+BO(x+ct)

N |-

t

-4x | [j2(7,x-c(t-1))-j2(1, x+C(t-1))]dr
(o]

13




By hypothesis, the data terms are uniformly bounded independently of c,

so it suffices to show that

t

sup | fjg(t,xic(t-r))dtl is uniformly bounded.
xt>0 0

By definition, ja(t.x) = fOzf(t,x,v)dv = f(t,x,v)dv

V2
J\/1 +C'2(vz1’+v§)

[va]

= li2(tx) < —
4\/1 +C2(Vi+Vz)

Lemma [2.3]: There exists a constant D, independent of ¢ and depending

f(t,x,v)dv

only on the data, such that

t
sup Lvel f(t,xxc(t-1),v)dvdtr < D
xt>0 —\/1 +C2(Vi+V3)
0

Corollary [2.3): The fields Eo and B are uniformly bounded : There

exists a constant D, independent of ¢, such that

| Eat) Il + IIB®I_ <D foralit>0

Proof of the Corollary . By the integral representations of E» and B, we

14




need to bound

xt>0

t
< Sup lval - f(t,xxc(t-1), v)dvdr
x>0 .\/1+c-2(v1+v§)
0

< D Dby the lemma.

-

t
SUP | [ jp(e,xtc(tt))d |
0

Proof of the lemma : We first derive an energy identity for Vlasov. The

relativistic energy of a particle is c2\/1+0'2|v|2, so the energy density is

given by
ek = | c@V1+c2|v|2 f(t,x,v)dv
Letting v = V1+c-2|v|2 and differentiating with respect to t, we have by

Viasov and lemma [2.2],

ek = [ c2yaf dv

A A
- | @y [ viduf + (E+c'BMV) - Vyf 1dv

-3x [ c2vifdv - [ c2y[ (E+c'BMV) -Vyf]dv

- 3x | cavyfdv - [ c2y Vy+[ (E+c-1BMV)E Jdv

Integrating by parts and using compact support of f, we have

15




ek =-dx | C2vifdv + c2 [ ([ (E+c'BMV)f ] - Vyy)dv

A

= -3xJ cwifdv + c2 [ [ (E+c'BMYF ] - 5 dv

= -3x | cavifdv+ [ ([ (E+c'BMV)f ] - v)dv

Now, since (\7 X B)-vA =0,

(E+c'BMY)f v = (E+c!(V x B))f - v

= Ef-v
- E-fv
= [([(E+c'BMUf ] - V)dv = [ E-fvdv
= E-( ] fvdv)
= E‘j

o) Jiek = -axj c2v fdv + E-j

From Maxwell,

-4njy = oiE1 and -4njo = dE2 + coxB, so

. 1
] = - Z; (atE1, ath + CaxB)

16




1
= E j = - 'G (E13(E1 + Ezath + CEgaxB)

1r1d
= -— | —— 2 2
= -2-[ 257 (1 Exl2+ 1 E2i2 ) + cE20,B]
L El2 1 E2dxB dxE2)B dxE2)B
88t|1‘4n(C2x + c(dxE2) ’C(xz))
1 19 1
2 _ — — ——
(2.4) e a,'E' an 5, (CE2B) + ;- c(3xE2)B

1 . ,
But again from Maxwell, dxE2 = s 0B, so we can write the last term in

(2.4) as
1 11 1
an c(oxE2)B = - o C(c 3(8)8 = "an B 0B
1 1 1
L = 2
= Tan 2 at IBJ2 8rn at 1B
E-j L E|R + |BJ2) - 1 (cE B)
= j " 8r 2 ( |E|2 + |B| 3, (CE2

0 c 1 0
e = -—[c2 - - 2= 5. (IE2 + |BJ]2
= A ek = N (c JV1de +41t EzB) 8n dy (IEI2 + |B|2)

Regrouping terms gives

) 1 d
(2.5) a_t[ 4nek + 5 (|EI2 + |B]?) ] = -5;(41tc2.[v1fdv + cE2B)

17




1 — 1
Let e = 4nek +3 (IE[2 + [BJ2) = 4nc? [Vi+c?viztdv + > (ER + |BP2)

and m = -4nc2 [ vifdv - CE2B

Then by (2.5),
% _am

ot ~ ax

which is the energy identity we seek. Continuing with the proof of lemma

[2.3], we integrate

0 de Jm
T 9t ox

over a backwards characteristic cone with vertex (x,t) and interior T,

using Green's theorem:

0 = [J[%2-TY6A = [[vys- (me)dA
T

T ot ox
= j(-m,e)-r’ids
aT

x+ct

= [eme) (0-1)dy
x-ct

18




-t

t
1 _
¥ J[(-m'e)‘(t.x+c(t-1)).,r—'—1+cz (1,c)(N 1+c?)]dz
0

0
1 _—
* f [{-m.e) I(t,x-c(t-t)).m (-1.0)(-N 1+c2)r
t

which reduces to

x+ct t
(2.6) [ e(y.0)dy = [l(ce-m)(t,x+c(t-1)) + (ce+m)(t,x-c(t-1))]dx
x-ct 0

Claim : There exists a constant D, depending only on the data, such that

for all ¢ 21,

"x+ct
Je(y,o)dy < Dc?
x-ct

Proof of the claim . By definition,

N |—

o(y0) = [(E?(y N2 + (Ej(y))2 + (B°(y))2] R

4nc2_"\f 1+¢-2|v|2 fO(y,v)dv)

EQO , B9, and {0 are smooth and compactly supported by hypothesis, while

E1o is compactly supported as shown earlier. Hence e(y ,0) is compactly

19




supported in y, and

x+Ct x+ct
1 0, \\2 0
Jte(y,O)dy = J 5 [(E1* + E)? + By)*]dy +
x-¢ x-ct
X+Cl
4rc? _”\/ 1+c2v]2 19(y,0))dvdy
x-ct
< D+ Dc?
< Dc2 for c=> 1
and so by (2.6) we have
t
(2.7) [ l(ce-m)(1,x+c(t-1)) + (ce+m)(t,x-c(t-1))]dt < Dc2
0
Now cetm = -Z—IE1|2 +§(E2§-B)2+ 4nc2_‘.[cxl1+0'2|v|2 Fvi]f(t,x,v)

We consider the integrand in the last term:

] (cV1+c2|v|2 3vq) (cV 1+C2[v|2 + vq)
cV1+c2v|2 Fv
VIZ +v1 (cN1+62[V|2 £ vq)

2
c2 + v, 02+v22

>
cV1+c2|v|2 £ vy cVi1+c2|v|2 + |vq]

2
c2 + v,

>
2cV1+c2v|2
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s

Note that (Jva]-c)2 2 0 = |v2|2 - 2¢clva| + ¢2 2 0 and so

2
V, + €2
2¢ 2 |V2|
2
c? + v,

5 vl
2cVi+c2v2  ~ V1+c2v|2
which implies

- |V2|
2.8 cVi+c2|v]2 + vi 2
( ) I | 1 ‘ﬁ_'*'—C_'Z—IVIT

Using (2.6), (2.7) and (2.8) and discarding the field terms, since they are

positive, we have

c2 [ [ [eNT+e2VZ 3 wi] flex + c(te))v)dvdr < De?
0

+

=  Sup JI -—l—l——“f(t x + c¢(t-1),v)dvdr < D

xt>0 Vi+c2jv|2 -

for all x and for all t > 0, where D is independent of c¢. This proves

lemma [2.3].
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Summary : The fields E;(tx), E2(tx), and B(t,x) are uniformly bounded
for all x and for all t > 0. The bound is independent of ¢ and depends only
on the data. These field bounds enable us to obtain bounds on the x-

support and the v-support of f.

D. Bounds on the Support of f
(1) v_- support: Let Py(t) = sup { |v| : 3 x s.t. f(t,x,v) # 0}

Lemma [2.4]): There exists a constant D, independent of ¢, such that
Pi(t) < D(1+t).

Proof : Integrating the characteristic equation for V gives

0
V(O,tx,V) - v = j[E(s,X(s)) + c-‘B(s,X(s))M\'}(s)]ds
t

t
= v = V(0,tx,v) + J[E(S,X(s)) + ¢1B(s,X(s))MV(s)]ds
0

By the assumption that f0 ¢ C:,(R3), there exists D s.t.

f(t,x,v) = f0(X(0,t,x,v), V(0,t,x,v)) 0 whenever |V(0,t,x,v)| > D.

Then, since < 1, we may write

O[:>

t
(2.9) Iv| < D+ J’(||E||°° +]IB]l_)ds  on the support of f(t,,").
0

< D (1+t) by the uniform field bounds.
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(2) x - support: Let Po(t) =sup { |x|: 3 v s.t f(tx,v) = 0}

Lemma [2.5]: There exists a constant D, independent of ¢, such that
Pa(t) < D(1+t)2

Proof: Integrating the characteristic equation for X gives

Vi(s)
V1+c-2|V(s)|2

x = X(0_tx,v) +

As in (2.9), using the compact support of O, we may write

[V1(s)|
V1+c2|V(s)|2

x| < D + ds on the support of f(t,-,-)

t
<D+ [|Vi(s)| ds
0

By lemma [2.4], we have

t
IXl < D + [D(1+t)ds < D(1+t)2 on the support of f(t,-,").
0

E. Bounds on p and j
Corollary [2.4]. |p(tx)] + |i(tx)] < D(1+t)3 for all x and for all t > O,

where D is again a constant independent of t, x, and c
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and depending only on the data.

Proof : From the definition of j(t,x), we have immediately:

litx) < j|0|f(t,x,v)dv

< lelf(t,x,v)dv

N

| D(1+t)dv
v-spt of f

A

D(1+t)3 for all x and for allt> 0

For p, we have
lptx) < [Iftxvidv + |n(x)]
< D(1+t)2 + D
< D(1+t)2 v x,t>0,

and the corollary is proved.

F. Estimates on Derivatives
We are now able to bound the derivatives of f(t), E(tx) and B(tx),

which will give us bounds on C' norms.

Lemma [2.6]): With the given assumptions on the Cauchy data, there

exists a non-decreasing function D: (0,-) » (0,) which is
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independent of ¢, such that

I + HEMI + 1Bl s D(t)
Proof : We begin with bounds on the spatial derivatives of E and B.

(1) Spatial Derivative of E1: Using Maxwell, assumptions on n and non

negativity of f, we have
WE1(tx) = 4np(tx) = 4n ([Htx,v)dv - n(x))

= PxE1(tx)] < 4r [fdv+ D
< D -(radius of v-support of f(tx))2 + D
< D(t) by lemma [2.4]

(2) Spatial Derivatives of E> and B:

To obtain bounds on dxE> and d4xB, we set

Ki(tx) = Ea(tx) + B(tx)

From the integral representations (2.3), we have
t

(2.10) Ki(t,x) = K.0(x4ct) - 4n Jjg(t,x;c(t-r))dt
0

where KtO(xict) = Ep(xict) + BO(xFct)
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We estimate 9xK+* only, since the bounds for K- are obtained in a similar

way. Differentiating (2.10) with respect to x and using the definition of

j2, we have

t
(2.11) IxK+(t,x) = dxK+:O(x-ct) - 4n f axjcgf(t,x-c(t-t),v)dvdt
0

Now oxK*+:0(x-ct)] = |9xEa(x-ct) + 3BO(x-ct)] < D, since Ej, BOe C: (R).

As in [2], we introduce the following differential operators:

T,:= oi+cdx This is the derivative along one of the

characteristics of the Maxwell system, e.g.

T,f(t,x-c(t-1),v) = %f(x,x-c(t-t),v)

S = dt + Vi9x

Note that by Viasov and Lemma [2.2],

Sf(t,x-c(t-1),v) (3t + V19x) (1, x-C(t-1),V)

-((E+C-1BM0) . va)l(‘t X-C“‘t) V)

-(Vv-(E+C'1BM0)f)|(t el v
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These can be inverted to obtain

A
T T.-
o = Ei_‘:J_ and 9 = +AS
C-Vjy C-vq

Replacing dx in (2.11), we have
t

A
dxK+ = dxK+0(x-ct) - 4n [J—V'AL (T+-S)f(t,x-¢c(t-1),v)dvdr
C-Vj
0
t

dxK+:0(x-ct) - 4n JJ_VZA— [.a_f(‘t,X-C(t-‘t),V)-Sf(‘t,X-C(t-‘t),V)]dVd‘t

C-Vilot
0
t
A
0 Vo
= JdxK+:0(x-ct) - 41tJ' 5—J - f(t,x-c(t-1),v)dvdr
T C-Vy
0
t
v
- 4n —%—vv-((E+c-1BM0)f)| dvdt
C-Vy (. x-c(t-1),v)

0
Since f(t,*,*) is compactly supported, c-01 # 0, and the v-integrals are

non-singular.

A A
= 9K+ = axK+0(x-ct) - 4nJl%f(t,x,v)dv + 4nJ—Vi—f(o,x-ct,v)dv
C-Vy C-Vy

t

A
- an |22 Vv (E+c1BMU)] dvdt
C- Vi (t.x-c(t-1),v)

0
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We integrate the last term and use the compact v support of f to get

t

) |
—"%—v-((E+c-1BM0)f)| dvdr =
C- Vi (T, %-¢(t-1),v)
0
t
A
A .
0 - J((E+C'1BMv)f| )v\,[—"ﬁ—]dvdx
(t,x-c(t-1),v) C-Vji
0
So we have

A A
K+ = aK+O(x-ct) - 4nJ 2 ¢4y v)dv) + 4nJ —~2_ 40 x-ct,v)dv
C-Vq C-Vy

t

A
+an | w2 ((E+c-1BM0)f)| dvdt
C-Vq {t,x-c{t-1),v)
0

which implies

A A
(2.12) |[oxK*+({t,x)] < D + 4nJ' J!%\Lf(t,x,v)dv + 41:J ﬂil‘fo(x-ct,v)dv

C-Vy C-Vy

t

A
+ 4“JJ “VV[ VA )” ||E+C’1BMC|| |f(x,x-c(t-1),v)|dvdr

C-Vj
0

since the spatial derivatives of Eg and B? are uniformly bounded.
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The v-integrals are taken over a compact set, e.g. {v: |v| < D(1+t) }, so

A
c-vi# 0, and

A
v

2. < D) Vt>0
C-Vi

(2.13)

Also, we have

and so

A A

V2 1 A {val A

(2.14) ”Vv[ A }” s Hvevall + ( Vv vill
C-Vq C

Lemma [27): |[Vwwill V2, i=1,2

Proof .

el o B |
T INTse2v2 ) (1+c2vj2)%2

(vivj)2

c4(1+c-2|v|2)3

i=1,2 j={1,2\

2
-2y°
1 1+cC V]

Vj 1
Now —- | = 2 0, so
Vi+c2|v|2 (Cr (1+4c2v|2)*2 — (14c-2vj2)32

___1___(‘_’1)2 1 2 (1 ¥ 1
Ve (o) (o) = (Voeme) -~ Teomve
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so 1Vwill < (1-&-C'2IV|2 ! c“(1+C'2|V|2)3 )

< V2 and the lemma is proved.

Then from (2.13) and (2.14) we have

A
(2.15) I vv[—"%-]ll < D)
C-Vq

Using (2.12), (2.15), and the bounds on f, {0, and the fields then gives

] oxK+(t) || < D(t) forallt>0, D(t) independent of x and c.

A similar treatment (see remark on page 16 of [2]) vyields
lloxK-()]_, < D(t), and the result is that

lloxK()Il, =< D(t) Vt>0

Using the bounds on the fields themselves, we have

IE2ll, . NIBWI, < D

(3) Derivati t C| e
The next step is to bound 9X, dV; and aVa, where o canbe 0y, dv,,

or dy,.
Integrating (2.1) gives
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t
X(s,tx,v) = I Vi(E,t,x,v)dg
S

V1 (S,t,X,V)

t
Vi - I[E1(§,X,(§))+C“B(é.X(ﬁ))oz(é)]dﬁ
S

t
Va(s,tx,v) = va- j[Ez(é.x(é))-c"B(é.X(é))01(§)]d§
S

We first consider the spatial derivatives. Differentiating with respect to

x, we find

t
A _ g Jachimee

s

e _ . j[axa(&,xm) B
o {BEX(E)2xV2(8) + axBEX(E) T3 Ua()} e
t
P2 o [[Ertexan 5, -
S
o 1{B(EX()3xV1(8) + 2BEX®) 2o U1 (6) o
Claim:  [aVi(g)l < V2 ||Vl  where 3 can be dx, dv,, or dy,
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Proof : Let H(v) = v = W

Then H: R2 » R2 and Hi(v) = Ci = Vi i=12
—\/ 1 +c2(v$+v§)

So aVi = A(Hi(V)) = Vy(Hi(V))-aV = Vy(Vi)-aV

= Vil < || vVill [lav ]|

(2.16) < vz||lav|| by lemma [2.7]

A
Taking absolute values, using (2.16), and the facts that ¢ > 1 and Lcl[ < 1,
i = 1,2, we may write

t
axx(e) < 1+ V212V
S

IA

) |
|9xV1(s)] f{(”axEﬂlw*‘ [19xBII_)I9xX(E)} +V2 |[B| _[19xV(&)!]}dk
S

t

f{(llaszl.,c,+ 113xBII)13xX(E)] +V2 |[BJ],_ 19xV(E)II}dE
S

IA

|9xVa(s)|

Using the bounds on the fields and their derivatives, we have
t
BXE < 1+ [ V21V
S
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t
Vi)l < [ (D(&) 13xX (&)l + V2 D [13:V()lI)ae

]

t
axVals)l < [ (D(&) [3xX(E)l + V2 D [13V(@)l1)a%
S

We add these three equations, and since se[0,t] and D(§) is a non -

decreasing function of &, we have (using the triangle inequality on

1V(ENI )

[9xX(s)| + 19xV1(s)] + [9xVa(s)] =1+

t
oj D (1) (19xX(E) +10xV1(E)] +[0xV2(E)1)dg

By Gronwall's lemma, then,

19xX(s)] + 19xV1(s)| + [3xVa(s)] < D) = D(t) for all se [0,1].

Now consider the vq derivatives. Differentiating with respect to v;
gives

t
X = -[ov Ve
S

t
1= [ BxE1E.X(E)3X(E) + ¢ (BE X(8)ay, V2(E) +

S

dv,Vi(s)

V2(£)axB(E, X (£))dv X(E))1dE
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t
Va(s) = - [ [3xE2(EX(E)AX(E) - ¢ (BEX(E)3,V1(E) -
S

A
V1(£)axB(&,X(&))dv,X(§))]dE
By the same arguments used above, we are led to

|av, X(s)| + [dv,V1(s)] + |dv,Va(s)| < 1+
t
OJ D(1)(13y X(E) + 13w, V1 (&) + 13v,V2(E)])dE)

and by Gronwall,
|0v X(s)| + ldv,V1(s)| + [ov,V2(s)| < D(t), forall se[0,]
A similar argument yields the same result for the v; derivatives.

(4) Derivativ f the Viasov _Densi f:

The bounds on the derivatives of the characteristics enable us now to
bound the x and v derivatives of f(t,,) independently of c:

axf(t,x,v) = 9xfo(X(0,t,x,v), V(0,t,x,v))

= 2(X,V)axX(0,tx,v) + VyfO(X,V)-3xV(0,t,x,v)
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Pid

0
= ity < || Gl 1BxXOtx vl + [IVufoll_ 119xV(0,t.x, V)|

Using the bounds on the derivatives of the characteristics and the

assumptions on the data f°, we have

(2.17) loxf(Wll,, < D(t),
Similarly,
Vi(t,x,v) = V,fo(X(0,t,x,v), V(0,t,x,v))
= |IVuitx VIl < lloxfll_ IVeX(O,tx, VI + [|Vf9]] _ [IVyV(0,1,x,v)]]
and so
(2.18) Ivvill,, < D)

(2.17) and (2.18) and the uniform bound on f(t,x,v) together give

lIf(t)]lc! < D(t) and the lemma is proved.

The t - derivative of f is bounded by using the Vlasov equation, e.g.

HftxV) = Vifx(txv) - (E+c1BMY) « Vyf(t,x,v)
= |otf(tx,v)] < |C1| I, + (HEMI, + IBMOII, V1] Vi

and since |C1| < ||¢/|| < D(t) on the support of f(t,-,*), the bounds on fx and

Vf yield
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|oif(t)) < D(t) for all t> 0, with D(t) independent of c.

Bemark:
Bounds on the t and x derivatives of j and p follow immediately from

the bounds on the t and x derivatives of f and the compact v - support

of f, using the definition of p as a v - integral of f. The result is

IBil.,. lIdp(ll,, < D@ forallt> 0,

where 9 can be either dy or dx and D(t) is independent of c.
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CHAPTER Ill: The Modified Problem
A. Modified Field Operators

We use the integral representations of the fields B and Ej:

Ea(tx) = %[Eg(x-ct) + Eg(x+ct) + BO(x-ct) - BO(x+ct)] -

2r€S [12](t,x)

1 o 0
B(t,x) = > [E5(x-ct) - E,(x+ct) + BO(x-ct) + BO(x+ct)] -

2n €° [i2](t,x)

where

t
€5 lip)(tx) OI liz(z.x-c(t-1)) * ja(t,x+c(t-1))]dx

We define a modified field operator, ég as follows:

[a(ty)dy
X

O |

~ 1 X
(3.1) € [ol X := 5 Joltydy =

B. Difference Between £S5 and €

By lemma [2.5], there is a constant D such that the support of f(t,-,v) is

bounded by D(1+t)2. Let D, be any constant 2 D.

Lemma [3.1]: For ¢ > 4D, and for |y| < Do(1+t2)
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(
D(t)

s if 12 4Dg/c
&5 e - €2 G| | s o
—CU' if t< 4Dy/c

\

t
Proof: (€5 [i2] - €5 fi2]) |, . = OJ j2(7.y-c(t-1))dr io_[iz(T.Y+C(t-T))d‘t

I(t.y)

{

Ol—*

y o0
fizttm)dn + T [ia(tm)dn}
-0 y

y _
=ojj2(t,y-c(t-t))dt - 3; [ j2(tm)dn

£{ Jizteyrott-endr - ¢ fizltn)an )
y

In the first integral, make the change of variable n = y-c(t-t1) and in the

third integral, let m = y+c(t-1). Then

y
. oac o . - 1 ¢
(€ [i2] - €5 [lz])|(t'y) = Jtlz(t . y_cl, n)C'1dn - g-o{iz(t,n)d'ﬂ
y-¢
y oo
* sz(t + 7l n) (e ndn & 1 I j2(t,n)dn
y+ct
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1 y-n 1
f[jz(t - 7=5n) - je(tm)]dn - 5 [iz(tn)dn
y-ct -
y+ct
- 1
J[Jz(t + =) -le(tw)]dn + Ijz(tn)dn
y+ct
By the Mean Value Theorem,
Yy y+ct
1 ly -nl : -n|
=3 J dtj2(t1,M) dn Jadz(Tz,n) I‘y_d
y-ct Y
1 e 1
- [ ittm)dn # o [ia(tm)dn
-0 y+ct
and so we have
(3.2) €tiz) - £zl |, | < [ Boiatermlin-vlen +
(th) c y -ct
y+ct

= | 19d2(z2.)] In-yldn +
y

y-ct
—~ I li2(t.n)ldn + — I li2(t,n)ldn

y+ct

Consider the first two integrals on the RHS. Recall, dyj2(t,) is

compactly supported with support bounded by a non-decreasing function
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D(t). Note that 14,12 € [0,f]. We may replace the intervals of integration

with (-D(t), D(t)), and the first two terms on the right in (3.2) are then

D(t) D(Y)

, 1 ,
< = [ 1dda(se.mlin-yldn + 5 [ 1dda(z2.m)in-yldn
-D(t) -D(1)

By the a-priori bound on o2, we have
|oga(t,x)] < D(t) where D(t) is again non-decreasing, so we can

combine these two integrals as

D(t)

1
-z | DW)In-yldn
-D(t)

IA

D(1)
D(t)
o2 _D(ft)(lnl + lyl)dn

IA

D(t)

B T (o + lyl)en

-D(1)

IN

DAy 4 1)

c2

and since ly| < D(1+t2),

D(1)

< c2

We now consider the other 2 terms on the right hand side of (3.2).
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Define 8(t) := {x: 3ve R2st f(tx,v) = 0}. Again, by the a-priori

bounds and the definition of D,, we have

(- Do(1 + 13) , Do(1 + 2)) o B(t)

where D and D, are independent of t and c.

Given y e R, if (y+ctj, =) n 8(t1) =@ for some t;, then

(y+ct,) n 8(t) =@ forall t>t;, because the transport speed of f
is |¢/1| < ¢. For the same reason, if (-, y - cto) n B(t2) = @ for some ty,
then (-0, y-ct) n 8(t) =D forallt> t,.

.. 4D
Take ¢ > 4D, and consider any (y,s) with T°< s < 1 and lyl < Dy(s2 + 1).

Then ly] - sc < ly| - 4Dy
< Do(s2 + 1) - 4D,
< 2D, - 4D,
= - 2D,

< - Do(s? + 1)

So (-, ly] -cs) n 8(s) =@ and because of transport speed,

(-0, lyl-cth n B8(t) =@ forallt>s. Similarly, (Jy| + ct, =)~ 8(t) = @

for all t 2 s.

4D
Hence for any (y) with t> = and |y| < Do(t2 + 1),

y-ct oo
[ liztm)ldn = [ li2(tm)ldn = 0
-oo y+ct
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~ D(t)
C C ..
and |€2 1) - €5 GeD)| | < G2
4D, - . . ,
If t< < the contribution of the first two integrals on the right hand

D(t
side of (3.2) is still bounded by —é;_l . There is now a contribution from

the other two integrals, however. We obtain a bound on this by including
in the interval of integration the piece [y-ct,y+ct] and use the bounds on

li2| and its support to get

ct

y. (- -]

) 1 : 1. D(t)
J li2(tm)ldn + < I li2(t.n)ldn < gf li2(tm)idn < =
—o0 y+ct

O |

Result:
D(t) . 4 D,
. . o2 it t > e
€< ) - €5 )|, | <
(y. D() D(t) = D(t) . 4D,
2 + < if t< —
(o C C C

and the lemma is proved.

C. The Moditied Problem (RVM-)
We propose a modified problem in which the field operators 83 are

replaced with the operators éi , and in which the Cauchy data is the

same:

42




ra,? +01axf + (§+C'1§MC)-VV? = 0
0 < fo(x,v) € Cpy(R3)

(3.3) (RVM™)

E2(x) & BO(x) € CofR)

The data, f0, Eg , and B9 are considered known. We also assume a

smooth, compactly supported, neutralizing background density n(x), as in

(RVM). Charge and current densities are given by

p(tx) = I ftxv)dv - n(x)

R2

P = | v

R2

The electric and (scalar) magnetic fields are given by

X
4n J p (t,y)dy

- 00

E1(t,x)
Ea(tx) = %[Eg(x-ct) + E(x+ct) + BO(x-ct) - BO(x;ct)]

- 2n €5[7 ] (t,x)

B(t,x) 1E[E,:,’(x-ct) - EY(x+ct) + BO(x-ct) + B°(x+ct)]

-2r €°[7 2](1,x)
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Chapter IV: A-priori Bounds for (RVM-)
Assuming existence of a global, compactly supported C! solution ?, we
obtain the following a-priori estimates:

A. Density Estimates

Define )~((s,t,x,v) and V(s,t,x,v) by

-

>

)~((s,t,x,v) = V1(s,t,x,v)
(4.4a) 9

;((t,t,x,v) = X

\

r
A

V(s,t,x,v) = E(s,X(s)) + c-1B(s,X(s))MV;(s)
(4.4b)

\~I(t,t,x,v) =V
.

where i(s) and '\7(3) abbreviate )?(s,t,x,v) and V(s,t,x,v). Then

9~ ~ ~
a—sf(s,X(s),V(s)) =0

= F(LX(1),V) = fitxv) = £(0,X(0), V(0)) = (X(0), V(0))

and since since f0¢ C:,(R3),

If®l, = |l = D

(Non negativity of ?(t,x,v) also follows from non negativity of f0.)
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B. Charge Conservation

We integrate the Vlasov equation in v to get

R"‘zat?dv + R_L C1adeV + J[( E + BMV)'Vy?]dV =0

)'VVF]dV

But (l§ +C'1§M0)'Vv? = Vv'[F(ﬁ +c-1§M0)], and since F(t,-,-) is

assumed to be compactly supported, by the divergence theorem,

f[( E+c1BM)-Vyflav = 0
R2

and AP +0xj1=0
We integrate in x to get

) opdx + jaxf1dx = Ia,de, since

] axﬂdx = 0 by compact x support of-f.

= ([ pdx) = 0 = [p(txdx = const
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j[j ?(t,x,v)dv - n(x)]dx = const = _[[_[ ?(O,x,v)dv-n(x)]dx

= [[fitxvidvdx = [[P(xv)dvdx, which is global charge

conservation.

C. Field Estimates

1. Uniform Bound on §1

X X
Ey(tx) = 4n I;Y (ty)dy = 4n f[j f(t,y,v)dv-n(y)]dy

Using the non-negativity of f and the assumptions on the data, we have

E1tx)} < 4n[[f(tyvdvdy + 4x [ In(y)idy

= 4nf [ (y,v)dvdy + 4x[ [ In(y)idy

IA
)

2. Bounds on E» and B

First note that from

x o0
~ ~ 1 ~ 1 ~
€5 [j 2] = = Iiz(t,y)dy t = Jiz(t,y)dy
* I(t.x) c o C 5
A

we get, using the assumptions on f0and the fact that ll’cgl < 1,
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1 ¢~
S Jlia(ty)ldy

& li2]| |

(t.x)

IA

IA

::_ ” Valf (t,y,v)dvdy

< j I F(t,y,v)dvdy

Jj fo(y,v)dvdy < D

It follows from the integral representations of ﬁg and B and the
assumptions on the data functions Eg and B% (e.g. smooth and

compactly supported) that
| Ex(tx)] < ||E5)l_ + ||BO||_ + 27D and
1Btx) < |lEg|l_ + |IBOJ|, + 21D, Vx,t>0

= IE2ll_ and ||B||_ are uniformly bounded in t and x, and the

bounds are independent of c.

D. Bounds on the Support of b
(1) v_- Support: Let Py(t) := sup {Ivj: 3x st f(txv) = 0}

Lemma [4.1]: There exists a constant D, independent of t and c,
such that Py(t) < D(t+1)
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~

Proof : Integrating the characteristic equation for V gives

A

t
v = V(O,x,v) + I[E(s,i(s)) + ¢c*1 B(s)MV(s))]ds
0
and since f0e C:,(R3), there is a constant D such that

fxy) = O(X(0,t,x,v),V(O0,t,x,v)) = 0, if V(O,tx,v)] = D

~

So on the support of f,

t

M < D+ [(UEN, + 1Bl )ds
0

< D(t + 1) Dby the uniform field bounds, and the lemma is

proved.
(2) x-Support: Let Pa(t) : = sup {|x|: 3 v st f~(t,x,v) # 0}

Lemma [4.2): There exists a constant D, independent of t, x, and ¢, such
that Pa(t) < D(t2+1)

Proof : Integrating the characteristic equation for X and using the
A

fact that | \7| < l \7| gives:

t

A
x = X(0,t,x,v) + oj Vi(s)ds

48




U
x
A

t

~

A
D +of N(s)lds on the support of f

t
< D+ J |V (s)|ds
0

IA

D + Dt(t+1)

IN

D(1+t2) where D is independent of t, x, and c.

E. Estimates on Derivatives

(1) Spatial Derivative of E;

X
From Ei(tx) = _[ p (t,y)dy,

-00

we get KE1(tx) = 4mp(t,x)

4n (j f(t,x,v)dv - n(x))

= BE1(t.x)| < 4n [ T(txv)dv) + D, since ne C)(R)

4 ( _[ F(t,x,v)dv)+ D

vl € Pq(t)

< 4n D-D(t+1)2 + D

< D(t+2)2, where D is independent of t, x, and c.
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(2) Spatial Derivatives of E»and B

Recall the integral representations of éz and B:

~ 1 2n ~
Es (t,x) = > [data terms] - ry I j 2(t,y)dy

x o0
~ 1 27[ I ~ j ~
B (tx) = 7 [data terms] - =~ j 2(t,y)dy -} ja(ty)dy
-0 X

axﬁg(t,x) is the sum of x - derivatives of data terms, which are

uniformly bounded by assumption, for example:
[9x(BO(x - ct))| = [3xBO(x - ct)| < |[9xBO||_ < D, since BOe Co(R)

= ||axr3:2||°° < D, independentof t, x, and ¢

For axﬁ(t,x), in addition to the uniformly bounded data terms, we pick up

an extra term from

X 00
en ~ ~ 4r ~
-Ox | o J j2(ty)dy - I j2(ty)dy = -3 la2(tx)
-00 X
But 4 | < i’fj valf (t,x,v)d
u c batx)| < == ] |velf (t.x,v)dv

< 4rn I ?(t,x,v)dv
v-spt?
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-t

< 4nD(D(t+1))2 by lemma [4.1]
< D(t+1)2, D independent of t, x, and c.

Result : ||axE2||°° < D uniformly in t and x, and

D(t+1)2 foralit> 0

N

l1aBw] ],

(3) Derivat f gl terist

We obtain bounds on dX, dVy and dVz where 9 can be 9, av, or avz.

Integrating the characteristic equations gives

t
)N((s,t,x,v) = x-sf \~/1(§,t,x,v)d§

t A
Vi(s.tx,v) - f [E1(e.X.(8) + c1B(&.X(8))V2(E)]dE
S

Vals.txv) f 2(6.%(8)) - c1BERE)V1®)]de

[}

where )~((§) abbreviates )'Z(é,t,x,v), etc. We first treat the spatial

derivatives:

X (s) - sf 3,V 1(E)deE
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aVils) = - | {aEeX@aKE) + o1 [BEeX®)aa) +
S .

3,B(5.X(8))3:X (£) V2(£)] }dE
t A
IxVa(s) = -sf {3:E2(E,X(8))3:X (&) - c[B(E,X(E))axV1(E) +
3.B(£.X(8))a:X (8) V1 (8)] } ot
L |
Take absolute values and use llcd szl < 1 (Also note that s e [0,t]):
t A
B < 1+ | [2V1@)]dk
S
1
[9xVa(s)] < sf {(J9xE 1] + |3xB|)[3:X ()| + c-1|B|[aVa(e)|}dE

t

xVa(s)| < sf {(10,E 2] + 19:B1)10:X (&) + c1|B||oxV+ ()|} o2

Using lemma [2.7] and the a-priori bounds on the fields and their

derivatives, we may write

t
PX(s)] < 1+ SI V2 ||,V ®)lIaE
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ot

t

laxVi(s)| < f (DE®)[3:xX (8)] + 1DV 2|V (E)||)de

]

t
|9xVa(s)| < I (D(E)I9xX (E)] + c 1DV 2||axV(E)]|)dE

S

Since we assume ¢ > 1, we may disregard the ¢! term. Also, since D(E)

is an increasing function of &, D) < D(t) Vv & e]s,f], and we have

t
BK(S)] + V1(8)] + cVa(e)] <1+ SJ D)(1:X (2)] + 116V @)1I)c

t
<14 SI DA(13xX (&)] + [3xV+(E)] + |3V (©)[)e

Gronwall's lemma then yields
[0xX(s)] + [3xV1(s)| + [3xVa(s)| < eDitsl < et = D(t) V se([0,1]

and a,o?, ax\"u, and axvg are all bounded independently of c.
Now consider the vq derivatives. Differentiating the characteristic

equations gives

t
dX(s) = - Jav1\71(§,t,x,v)d§
S
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and so by lemma [2.7], we have

t
(i) oy, X(s)| < f V2 [Jav, V(®)lldg
S

t A

Then, v Vi(s) = 1- f {9xE 1(&.X(®)av, X () + c1[B(&.X(8))ov, V2 (2)
S
+ Va(8)a,B(e,X(8))av, X (£) ]} e
t

So v Y1) s 1+ [{IE @l Ia K@) + 1BEI o, V@)

S

+ [9<B(E) 1o, X (8)]} dE

A
|V
(using c21 and 02 < 1)

Now, using the a-priori bounds on §, axé, and ax€1, lemma [2.7], and

the fact that D(§) is a non-decreasing function of &, we have
t

(ii) B V1@ s 1+ [ DOaK @I + v, V@l
S

Differentiating the equation for Vg gives
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t
dv,Vals) = - f{axéz(a.i@))av,i (&) - c1[B(EX(E)av,V1(E)
S

+ Vi(B)a,B(e.X(8))av, X (&)] } ot

and as before we may write
t

i BvVae)l s ] DK@l + oy, V@l
S

Adding i, ii, and iii gives

t
B K () + v V1(8)] + 3, Vo) < 1+ [ D13y, K@) + 13, V(O]
S

t
< 1+ [ DO, K@) + v, V1(8)] + [v, Vo))t
S

By Gronwall,

lov,X(8)] + 19v,V1(s)] + [av,Va(s)| < eDWitsl < DMt = D(t) V s e [0,1].

A similar argument yields the same result for the vz derivatives.
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Chapter V. Comparison of Solutions

We have the original problem, (RVM):

3f + V1dxf + (E+c1BMV)-Vyf = 0

with given Cauchy data
f(0,x,v) = ©(x,v), B°(x), and E(x)

all smooth and of compact support. The characteristics are given by

. A
X(s,t,x,v) = Vi(s,t,x,v)

X(t,t,x,v) = x

V(s.t.x,v) = E(s,X(s)) + c'B(s,X(s))M V(s)

V(t,t,x,v) = v

The modified problem, (RVM~) is:

~ A ~ ~ ~ A ~
otf + vidxf + (E + c'BMv)-Vf =0

with the same Cauchy data

(x,v), BO(x), and E(x)

The characteristics for the modified problem are given by
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f

. A
X(s,t,x,v) = V4

)?(t,t,x,v) = X

\

r

‘\:/(s,t,x,v) = E(s,X(s)) + c1B(s,X(s)MV(s)

V(t,t,x,v) =V
.

The solutions of the two problems at a point (t,x,v) are
fitx,v) = fo(X(0,t,x,v),V(0,t,x,v)) and
fitxv) = (X (0,t,x,v),V(0,t,x,v))

Recall that by the a-priori bounds, there are ¢ - independent constants D
and D such that the x-supports of f and f are bounded by
D(1 + 2) and D(1 + 12), respectively. Let D, = max(D, D).

Theorem [5.1}: There exists a non-decreasing function
D:[0, %) > [0, ) such that for c > 4D, and forallt > O,

I -1, s 20

c2

Proof : We consider the difference of these solutions along the
characteristics of the modified problem. (Note that if |i (s) | 2 Do(1 + s2),
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then dis (f- = 0, so we take lf(s) | < Do(1 + s2).)

f )l (s.X(s).V(s))

d

~ d ~ ~
as (- f)l(s,i(s),\?(s)) = gs [(8:X(s),V(s)) - 0

af(s,X(s),V(s)) + oxi(s,X(s),V(s)) :f((s) + vvf(s,i(s),T/(s))-\:i(s)

A

af(s,X(s),V(s)) + V1(s)axf(s,X(s),V(s)) +

[E~(s.§(s)) + c-1§(s,)?(s))MV/(s)]-va(s,i(s),V(s))

- {V1(s)axf(s,X(s),V(s)) + [E(s.X(s)) + c1B(s,X(s))MV(s)]-

Wi(s.X(s),V(s))} + Va(s)axf(s, X(s),V(s)) +
[E(s.X(s)) + c'B(s.X(s))MV(s)]- Vi(s,X(s),V(s))

{[E(s.X(s)) - E(s,X(5))] + c1(B(s,X(s))MV(s) -

B(s.X(s))MV(s))} - Vvi(s, X(s).V(s))

Recall the a-priori bound |{Vyf(t,-,-)[l_ < D(t) Vt20 where D(t) is

non decreasing. Integrating from 0 to t,
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(f-f)l(t,x,v) - (f'f)l(o.im),\"/(on *

t A
[{IE(s%9)) - E(s.X(s)) + et (Bls Xe))MUs) -
0

B(s,X(s))MV(s))]- Vvi(s, X(s),V(s)) }ds

t
= 16D, Ml = [IVuiIL{IESX(S) - Es. X +
0
c1[|B(s,X(s))MV(s) - B(s,X(s))MV(s)||}ds

t
< oj D@ {IIE(s.X(s)) - E(s.X(s))]| +

A A

c1||B(s.X(s))MV(s) - B(s,X(s))MV(s)||}ds
First consider || E(s,X(s)) - E(s,X(s)) || :
|E(s.X(s)) - E(s,X{s))|| < E1(s.X(s)) - Eq(s.X(s))] +

|E2(s.X(s)) - Ea(s.X(s))]
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X(s)
Now |E1(s,X(s)) - E1(s,X(s))| = | 4n J (P (s.y) - p(s.y))dy |

-00

i(s)
< 4n jlﬁ(s,y) - p(s,y)|dy

-00

')'((s)
< 4n JRJ;lf(s,y,v) - f(s,y,v)|dvdy
< 41r“' It (s.y,v) - f(s,y,v)|dvdy
< DY) ||f(s) - f(s)]]_, since f(s,,*) and

?(s,-;) are compactly supported with support bounded by a non-

decreasing function D(s)

Next, | Ea(s.X(s)) - Ea(s,X(s)) | = 2| (€[} 2] -Eiﬁz])l(sli(s)J

Triangulating, we write

on I (Ei[fz] - gi[jz]) l(s,i)l < 21:{ l (§$[T2] - 'EiUZ]) |(s’;()|

(6 €56y }

By lemma [4.1], we have
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i [l(cg)_ if s 2 t %’"
on | (€501 - €5021) | 5] <
D—(CE)‘ if s < 4 [Lco_

For the other term, we have

~p o~ ~ 2 ~
2r | (€50 2]-8?,U2])|(s';()| < 7" I | j 2(s.y) - ja(s,y) [dy

2 o
< —cE _” |32||f(s,y,v) - f(s,y,v) |dvdy

< 2n [ |Tisyv) - (s.y.v) |dvdy

< 2z D |F(s) - f0)]],

where D(t) is cubic in t. So we have the following so far:

- ~ c?
. f(t) - f < D D -
s |l - Toll, < <t>ofl 1t - Tl + {M} :
C

c1}|B(s,X(s))MV(s) - B(s,X(s))MV(s)}|]ds
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Do

L 4
where the top member of the bracketed term applies if s 2 P and the

4D
bottom if s < —CQ . We now work on the terms involving the magnetic

fields.

A

c1|| B(s.X(s))MV(s) - B(s,X(s))MV(s)||

< c1||MV(s)|] | B(s.X(s)) - B(s.X(s))]|

>

<

Vsl

c < 1, we have

Then, since M s just a rotation and
A ~ ~ ~
- || Ves)|] |Bls.K.(5)) - B(s.K(s))]
< |B(s.X(s) - B(s,X(s))]

Using the integral representations of B and ﬁ, since the data terms

cancel, we get

|B(s.X(s) - B(s.X(s)) | = | (-2n€S[j 2] + 2n€°[j2])

I (s,f((s))|

2n |(§S[i~2] - éf[iz])

IA

|<s.>"<(s»|

2r | (€%1i2] - SEU2])|(S_)~((S))|
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Again by lemma [4.1] we have

[lc(zﬂ if s 2 4969‘
x| (€021 - €2021) |, | <
(s, X(s))
o D—‘(fl if s < 4%0“
Considering the other term, we have
X (s)
0 - 80| | = 2|3 ] Totey - L [ Tatney
- X (s)
1 X(e) i
(3 Ilzty)dy - 5 Jia(ty)ay)|
)Z(s)
)Z(s)
2 ~ ~
= —C’f| f(jz(t,y) - ja(t,y))dy - f (i 2(ty) - j2(t.y)dy |
had )Z(s)
X(s)
2
< ?n{ Il i 2(ty) - iza(ty) [ ay + Il I 2(ty) - j2(ty) |dy }
X(s)
2r

- = J | i 2(ty) - j2(t,y) |dy

and by the same steps as before, this is

< 2zD(Y) |[f(s) - f(s)||_
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A A

So from the c4|| BMV - BMV|| term, we pick up two additional terms

under the integral sign on the right hand side of (5.1), namely:

D(s)
2rn D(t) ||f (s) - f(s)]]_, +
D(s)
(o]
Result:
D(s)
~ - c2
(5.2) £ty - T, < DO | |lf(s) - f(s)ll + ds
D(s)

Cc

where the top term in brackets applies when s 2 4D,/c and the bottom

when s < 4Dy/c.

4D
Case 1: t< T° Then s < 4Dy/c foralls € [0,t] so the bottom term in

brackets in (5.2) applies, and

t
110 - Fll., < 00 [{ 1115 - Tl + 2 Jas
o

t 4D4/c
< by [ f||f(s) -t 4 J D—(CH ds |
0

0




t
<20 . py f||f(s) - f(s)|l_ ds
0

c2
By Gronwall,
~ D(t D
(5.3) ) - f@il, < —clz—lexp(tD(t)) = —c‘.}l forallt < 45%9

4D . 4D
Case2: t > —2. Thenfrom s=0to s=—_", the same argument

c c
D(t
applies, and the error is bounded by —c%l

1
For s € [4D°/c , t] ,the -7 error term applies, and we have

t
1)) F@ll, < %(29 + J{ D)1 (s)-T(8) |, + chzﬂ} ds
4Dy/cC

IA

c2

t
B8, [omllts)Ts) 1l ds + g5
0

IA

t
D(t) ~
L+ [ Dl f(s)-F(9)]],ds
0
By Gronwall, we again have

~ D
- Toll, < o
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Result:

(5.4) i - TN, s 22

o2 forallt > 0
and the theorem is proved. An immediate result is the following
Corollary [5.1]: Let S(t) = { x: there exists v with either f(t,x,v) # 0O or
f(tx,v) # 0}. (So (- Do(1 + 1), Do(1 + 12)) > S(t).) Then
foralit > 4Dy/c,
~ ~ D(t)
ITE® - EW® ll,+ |1 BO -BOIl, <

where || g(t) ||s denotes the supremum over all x e S(t) of g(t,x).

The proof follows immediately from theorem [5.1], the definitions of E, ﬁ,

B, é, and the c-independent bounds on the x and v support of f and f.
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PART i

CHAPTER VI: Computing Solutions
A. The Program

The scheme used is of the type appearing in [3], e.g. a particle
method is used on the Viasov equation while the fields are advanced by
using the exact solution representation applied to approximate solutions.
In [3], Glassey and Schaeffer proved that such a scheme for RVM is first
order in space and time. We take c=1 and begin by choosing a phase space

grid.
Let AXx, Avq, Ava, At be > 0.

Define: C* = { (x,v) : @1Ax < x < (01+1)AX, 02AVy < vy € (a2+1)Avy, 03Av) <

v2 < (a3+1)Ava }
and C* = { (a1+1/2)AX, (xp+1/2)AVy, (a3+1/2)Avz }

Let qe = f0(C%)(Ax)(Avq)(Ava) = [fodvdx

a
c

( This will be the charge of a particle whose initial state is C”.)

Let A ={ae Z®:qe=0} and note that O is finite by hypothesis.

Let € = Ax and define S, &, and ©_ by

67




{1 SIx| i x| s 1
S =10 it x| > 1

Se(x) = €1S(€e'x )

X
0,(x) = [8:(y)dy

Define a grid on space-time ( [0,) x R ) as follows:

t" = nat, n = 0,1/2,1,3/2,...
xK = kax, ke Z

To start the simulation, define approximate quantities (designated for the

moment by underlines) as follows: For all k e Z and a € yAS

E(0.X) = EO(x)
B(0,x¥) = BO(x¥)

X*(0) = (1 +1/2)AX
S/“(t”z )= V(t1’2,0,C“)

To define the simulation iteratively, assume that for some n, E(t",xk),
E(t",xk), X“(t"), and S/"( t"*'2) are known approximations of E(t",x¥),

B(t",x"), X(t",0,C%), and V(t"*""20,C*) forallk e Z and o e Z°.

At this point, in order to simplify the notation, we drop the tildas (which
designate quantities from the modified problem) and the underlines

(designating approximate quantities). For the remainder of this section,
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all quantities are approximate quantities for the modified problem.

First, advance X” by defining

Xe(t) = X%(t") + (¢ YVE("2)  wie [t ™).

The next step is to compute and advance the approximate sources p and jo.

From (1™ xv) = 2, qu8e(x-X (™ )8(v-VE(t™112))
a
we get  p(t™'x) = 2,qes(x-X*(™") - n(x)
a
A
and ("' x) = zaanZ(t"*"z)as(x-xa(t"”))

Next, the fields are advanced using these approximate sources. We know

p(t™'x) and jp(t"',x) for all x. To advance E;:

k

X
Eo(t %) =4n [p(t™y)dy

- 00

k
X
= 4n “Z qede(y-X*(t"*") - n(y) Jdy

k
X X
—an 3o [ sly-X2("")dy - 4x [ n(y)dy

- 00 - 00

k
X
= 41 ) q°0,(x-X*(t™")) - 4x [ n(y)dy

- 00
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To advance Ez and B using the approximate source j,, we employ the

integral representations to get
Ez(tn+1 ’xk) =;_[Eg(xk_tﬂ+1) + Eg(xk+tﬂ+1) + Bo(xk_tn+1) _ Bo(xk+tn+1)]

- 2x ] ja(t™",y)dy

B(™' x¥) = 2 [EQ(xK-t™1) - E(x*+1™1) 4+ BO(x ") 4+ BO(x*4+1™")]

k

©0

X
2] [ pay - it )y ]
k

- 00

X

The data terms are known. To treat the integrals, we proceed as follows:

2| 2™ y)dy = 2 J[S 0" )5 y-x (1) ]y
o

2 an,f [ \A/Z(t“*"z)ss(y-xa(t"*‘))]dy

A
- 21t zqavg(tn+1/2)Iae(y_xa(tn+1))dy

a

A
on unvg(tn+1/2)
a

and for the integrals in the expression for B, we have

70




k k

X X
Ija(t"*‘.y)dy - I[):qa\“/;(t"*"z)ae(y-X"(t"*’))]dy
-00 00 @
- [an\'};(tnﬂm)]ee(x_xa(tnﬂ))
and Ijz(tn+1,Y)dY - {[anog(tnn/2)8£(y_xa(tn+1))]dy
k X a

A
Taeva(e+172) [ 5 (y-x2(t™")dy
o k

X

anog(thlZ)[.' - Ge(x_xu(tnﬂ ))]

o

The result is that the fields are advanced using

k
X
Eq(t™ x¥) = 4= Zq“@e(x-x"(t"”)) - 4n [ n(y)dy
o -00

Eo(t™! x¥) = ;— [ES0™") + Ep(x +t™7) + BO(xK-t™) - BO(x*4t"*")]

A
- 21 zquvg(tn+1/2)
o

B(tn+1,xk) = %. [Eg(xk_tn+1) . Eg(xk+tn+1) + Bo(Xk-tn+1) + BO(xk+tn+1)]
i

A

+2n '%,quvg(t"”’z)h - 20 (x-X*(t"*"))]

|




We now define the fields E(t"*',x) and B(t"*',x) V x € R by linear

interpolation:

B(t"'x) = ¥, B(t"™".x*)ed (x-x)
k

with similar expressions for E1 and E2. The final step is to advance the

momenta. We take

V?(tn+3/2) V“(tn+1/2) +AtE1(tn+1,xa(tvn+1)) +

1
at A A
_Z_B(tnﬂ’Xa(tn+1))[vg(tn+1/2) + V;(tn+3/2)]
Similarly,
V;(tn+3/2) = V;(tn+1/2) + Ath(tnn,xa(th)) -

At A A
5 B(tn+1 'xu(tn-ﬂ ))[V?(tn+1/2) + Vt:(tn+3/2)]

Or, as a system,

Va(tn+3/2) V“(tn+1/2) +AtE(tn+1’Xa(tn+1)) +

At A
5 B(tn+1 ,Xa(tn+1 ))M [VT(thIZ) + \’/\?(tn +3/2)]

This nonlinear system is always uniquely solvable for V*(t"*32) and this
completes one step of the scheme.
The program was tested extensively, first by comparing against single

particle problems for which exact solutions could be computed, and then
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by generating steady-state solutions ( see appendix A ) which also
provided "exact" solutions against which the program's output could be
directly compared. We found the scheme to be better than first order

accurate in x,v, and t, but not quite second order.
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CHAPTER VII: Numerical Experiments
A. Scaling

The analysis of the convergence of solutions of (RVM) and (RVM~) as
a function of the (increasing) parameter ¢ was necessarily done with ¢
appearing explicity. We hoped to demonstrate this convergence by direct
comparison of computed solutions of the particle scheme coded for the
modified problem with those produced by the Glassey/Schaeffer scheme
from (3], given the same Cauchy data. A complication is that in [3], the
speed of light is taken to be 1 (as are the charge q and the electron rest
mass m) and in order to compare the output of the two programs when
provided with the same data, we re-scale the modified problem to achieve
¢ = 1. (See appendix B) The analog of the parameter ¢ becoming large in
the unscaled problem then is the v-support of the data (and solutions)

becoming small in the scaled problems.

B. Data

After preliminary tests on simplified problems (for instance problems
with Eg = B0 = 0), we analyzed results with 2 basic sets of Cauchy data,

providing a "symmetric” problem and an "asymmetric" one.

1. Symmetric Problem

For the first problem, the data is as follows: Define

(7.1) 0(xv1,v2) = [(1-x2)(1-vi2) (1-vz2)] for x| <1, [vi] <1, [vo| <1

and fO = 0 otherwise.
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1

Then, since f(1-s2)3ds = 3—5 we see that

-1

2
| fodv = G-%) (1-x2)3 for jx| <1 and O for |x| 2 1
Define n(x) = (%—)2(1«2)3 + 2x(1-x2)3

Then the condition of global neutrality is met, since the first term
in n cancels with J‘f°dv and the second term is odd, hence has

integral zero. Note also that the smoothness requirements on the
data are met.

As data for Eo and B, we choose

a1(1-x2)3

0
E,
BoO

as(1-x2)3

where the parameters a; and a; allow us to adjust the size of
the data.

The above is for the unscaled problem, i.e., the case in which

the data are fixed and c is allowed to increase. For purposes of
computation and comparison, we scale to c¢=1 and allow the
support of the data to decrease. As discussed in appendix B, we

take, using bars to designate quantities in the c=1 problem,
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fo (x,v) = c2fo(cx,cv)

1
= c2[(1-c2x2)(1-02v12)(1-c2v2)® for x|, |vil, Ival <

[+]
=3
o
-1
I

0 otherwise
_21 L 2.2\3
E (x) =5 (1-02x2)

BY (x) = 22 (1-c2x2)°
Also,

n(x) = n(cx)

= 32 - 3 . Py 5 . 1_
= (:335)2 (1-c2x2)” + 2cx(1-¢2x2)” if |x| < c and

n(x) = 0 otherwise

It is clear that allowing ¢ to increase in the unscaled problem
corresponds to the support of the data in the scaled problem

1
decreasing like -

2. Asymmetric Problem
In the second problem, the data functions above are shifted as
follows:
We translate {0 as given in (7.1) by 1 in all three coordinate

directions in phase space.
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fo(x,v) = [(1-(><-1)2‘)(1-(V1-1)"’)(1-(V2-1)2)]3
if 0 < x,vqy,vo € 2 and

fo = 0 otherwise

2
Then J[1-(s-1)2]3ds = 3—_3; and we define
0

W = (2002 4 20en(1-e12)°

and, as in the symmetric problem, we have global neutrality.

In a similar way, we set

E = ai(1-(x-1)2)°

BO = ap(1-(x-1)2)°

In this case, the initial conditions provided for the scaled problems

are

o) = c2[(1-(ex-1)2)(1-(cvq-1)2(1-(cva-1)2)]°

. 2 .
if 0 < x, vy, vo < c and 0 otherwise.

2

E2 (x) = a—;‘—[1-(cx-1)2]3

B = 2 [1-(cx-1)2]’
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and

nx) = (§—§-)2 [1-(ex-12]° + 2(ex-1)[1-(cx-1)2]"

. 2
|f05xsc

n(x) = 0 otherwise.
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Chapter VIlII: Summary of Results
A. Expected convergence rates

In attempting to observe the convergence rate of the solutions as ¢
increases, we compared the values of the fields E> and Ez on the union
of the support of f and the support of f, i.e. where there is charge.
(Recall that Eg(t,-) is not compactly supported.)

We chose values of ¢ of 25, 50, 100, and 200, and compared the
outputs of the two programs at t = 0.08. Since the scheme from [3]
operates "at the CFL boundary”, e.g. Ax = At, a balance had to be struck
between a small enough Ax (which determines the number of particles)
for good resolution, and a reasonable number of timesteps to avoid
excessive run times. We settled on total particle numbers of 64,000 for
the modified program and 59,319 for the unmodified one, (The
discrepancy is due to a slight difference in the way the programs
initialize the particles) with corresponding Ax's ranging from 0.002 for
the c=25 runs to 0.00025 for ¢=200. With At = Ax, this resulted in 10
timesteps for ¢=25, increasing to 320 timesteps for ¢=200.

We were interested in documenting the following 3 main results:
1. Convergence of solutions of the two problems as ¢ grows.
According to corollary [5.1], we should observe
|| E2(0.08) - E2(0.08) ||, < c%

This result applies to the unscaled problem. For the scaled

problems, we have

mil

2(t,x) c1E,(t,cx)

Eo(tx) = c'E(t,cx)
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PL

so || E2(t) - E20) [l = llcE 2t - cE2(0) ]I,

— ~ D
IE 200 - B2 I, < o)

2. Avoidance of the CFL restriction in the modified problem,
e.g. attainment of comparable agreement with the
program for the unmodified problem when the modified

program uses much larger timesteps.

3. Improvements in accuracy in solutions of the modified
problem over those computed without the data terms
present in the solution representation. A significant
difference here would demonstrate the value of the
appearance of the data terms involving the original Cauchy
data, which again would not be present were the Darwin

and quasi-electrostatic modifications of Maxwell's

equations made first.
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Results

We first give results for the symmetric problem.

max |E2-§2| max |E2-E2| max |E2-E2|
-~ . ~ with no colé
Cc At with At =At with large At col3
data terms
25 0.002 3.514E-03 3.532E-03 1.347E-02 3.8
50 0.001 7.120E-05 [49.3 7.295E-05 1.680E-03 |8.0 |23.6
100 0.0005 9.057E-06 | 7.9 9.471E-06 2.102E-04 |8.0 |23.2
200 | 0.00025 1.135E-06 | 8.0 At = 0.004: 2.629E-05 |8.0 |23.2
1.180E-06
A; = 0.008:
9.546E-06

Remarks : 1. Convergence rate - Column 4 shows that as ¢ is doubled, the

solutions converge at the rate of 1/c2, as predicted in

Chapter V.

2. Avoidance of CFL limitation - The value of At used in the
¢=25,50,100 runs was 0.008, which in the modified scheme
yielded the same accuracy as the CFL-limited unmodified
scheme. For the c=100 runs, this gives a factor of 16 in the
size of the timestep. In the ¢=200 run, we achieved the
same accuracy with At =0.004, which is again a factor of
16 better than the unmodified scheme.

3. Inclusion of data terms - Column 8 shows a factor of
approximately 23 in the accuracy of the solutions when the

data terms are present in the solution representation vs
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when they are omitted.

The analagous results for the asymmetric problem are

max |E2-E2| max |E2-E2| max |E2-E 2|
o~ i ~ with no colé
c At with At =At with large At col3
data terms
25 0.002 4.603E-03 4.630E-03 1.443E-02 3.1
50 0.001 1.337E-04 |33.4 1.408E-04 1.762E-03 8.2 12.8
100 0.0005 1.588E-05 8.7 1.650E-05 2.177E-04 18.1 13.7
200 | 0.00025 1.916E-06 | 8.3 At = 0.004: 2.706E-05 |8.0 |14.1
1.972E-06
At = 0.008:
1.016E-05

Remarks : 1. The 1/c2 convergence rate is again shown by the entries in

column 4.

2. Allowable At is again 16 times as large as in the
unmodified problem.

3. Although not as great as for the symmetric problem, the
increase in accuracy resulting from the inclusion of the

data terms is still better than an order of magnitude.

82




Appendix A: Steady State Solutions for (RVM)

We seek a solution of the time - independent Viasov equation (with ¢ = 1)

(A.1)

V1dxf(x.v) + (E(X) + c1B(X)MV)-Vyf(x,v) = 0

We impose the condition Ez = 0. Since in the time - independent (and 1

space, 2 momenta) case, Faraday's Law of Induction becomes

Since E;

asz = 0

E, = const, and E, = 0 is the only finite energy solution. The

equations of the characteristics are then

. A

X =V

. A

Vi = E(X) + V2B(X)

. A
Vo = -ViB(X)

is an electrostatic field, there is a potential, U, such that

Ev(x) = -U'(x)

We introduce 03, an anti - derivative of B, e.g.

Bx) = 3 (x)
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Consider the quantities

& = Visv2 + U
Q = Vo + 63

Along characteristics of the time - independent Viasov equation, these

quantities are conserved:

% &(xm.v) = »& X+ V& -V

V-V
1+|V|2

]

LX) X +

A A . , .
V1'V1 + V2'V2 + 1L(X)X

Vi[ L0 + VB (] + Va(-ViB (x0) + WXV
0

L (vaty + Bxm) = Vo + B (X)X

- 0B X + Bl
-0

It follows that f(x,v) := 9(8,9,) is a solution of (1) for any (sufficiently
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smooth) function g.

The potential U satisfies Poisson's equation:

”»

-U = 4np =4n( [fdv-n) or
(A.2) -'U."(x) = 41t[ fg(\/1+|v|2 + U(x), vo + 63 (x))dv - n(x)]

In the time - independent case, Ampere's Law becomes

-0xB = 4=nj>, so (3 satisfies

”

-0 = 4njp = 4x j vofdv, or

(A.3) - @"(x) = 4nf ozg(\l1+|v|2 + U(x), vo + 63 (x))dv

We have then equations satisfied by 1 and (3 and the task is to find
1, 03, g, and n so that (A.2) and (A.3) are satisfied, neutrality hoids,

and the appropriate requirements for compact support and (to the extent

possible) smoothness are met.

For simplification, we will require (A.2) and (A.3) to hold on (0,1). The
various functions appearing will be defined on (-1,0) as even or odd
extensions, and outside (-1,1) as constants. With these requirements in
mind, we impose

(BC) Lo =Um=B80==B1)=0
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U and 3 are extended evenly on (-1,0) and as constants on R\(-1,1)

as follows:

Yx) =U@) =0, |x=1
U (-x) = U(x)

Bx=0B0), x=1
63 (x) = 03 (x)

For n, we require

nix) =0, |x]21

n(-x) = n(x)
On g, we impose the condition
g&2)=0 if & >1
Note that this ensures the compact x-support of f, since
X221 = U(x)=0
= & =vi+v2+U21

= g(&.L) = f(xv) =0
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With these definitions, (A.2) and (A.3) are satisfied V x. Note also that

the neutrality condition is built into the boundary conditions, since

pox = ax[ € ox - 2= (E(1) - Ex(-1)
- ;:;(u'(-n “U'(m) =0

We now proceed to choose g. Let

o(6.8) = %1 _ (&)

o,1)

= (vg s 2vol3 + 6 2) I(_“'”(g)

With this choice, we find

J- Cgde = j 02(v§ +2vo03 + (3 2)I(_m’”(&.})dv

Now & =Vitvl + UL <1 & V1+v2 <1-U
& 1+4v2 < (1-U)2

o V2 < (1-UL)2 -1
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o M < \(1-U)2 - 1

Note that if U < 0, this is always defined. The integral becomes

02(v§ +2v03 + 03 2)dv
i< V(1-1)2-1

2
Vo

d
Vi +)v)2 v

vl <\/(1-1L)2-1

203

2n 03 [%—(1-1“3 - (1-U) + 25 ]
and the equation for 63 becomes
no2
(A.4) - ;:; 03 (x) =?"[((1-u(x))s - 3(1-U(x) + 2]03 (x),

when U(x) < 0.

We will also need to evaluate j fdv:

I fdv j (vg_ + 2vzﬁ3 + 03 2)1(_”'”(8)@

J (v22 + 63 2)dv

v <\j(1.u)2.1
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which gives

ws fiav = F(-021)7 2B F(0-0)%1)

N

Next, we choose

-A(1-x2)3  if |x]| < 1
Ux) = {

0 if |x] 2 1

where A is a parameter whose purpose will be explained shortly.

Inserting this into (A.4), we have

’” 8 2
(A.6) B (x = -—=

3 c(x)ﬁ3 (x) where

(1+A(1-x2)2) - 3(1+A(1-x2)3) + 2.if |x] < 1
o(x) =

0 if x| = 1

Comment: Different choices of g can simplify the equation for 6G3. For
example, if g = (C+2€>)I(_” 1)(8) where C is a constant chosen to force
non-negativity of f, we obtain (using the same U), 03 (x) = Z(x) where

T is a 16th degree polynomial in x. This can be integrated twice to find a
closed form solution 63 (x). It turned out, however, that this solution

resulted in excessive amounts of charge present to maintain the steady

state. Computation of the fields involves subtracting an integral of the
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background ion density from an integral of the electron density. Since
these turned out to be large numbers, an extremely fine refinement of the
mesh (resulting in a prohibitively large number of particles) was required
to resolve the fields. The above choice of g was deemed the best after
much experimentation. To compute a solution of (A.6), we use a modified
shooting method. We choose (arbitrarily) 6 (1) =1 and require 03 '(1) = 0.

We solve an initial value problem with this data specified, and vary the
parameter A until we achieve a zero slope at x = 0. (3 is then extended

as described at the beginning of this section.

The difference scheme used is

B . oR%, @R 82

(Ax)2 T3 o) "

or B - 2ﬁ3k-ﬁ3k+1-%ﬂ(Ax)2c(xk)ﬂ3k

1 .
where 03“” -03"- 1, Ax = and we try to achieve 6 - 63
With n = 500, the value of A required to achieve the boundary conditions
is found to be A = 0.808195. At this point, we consider (3 a known
function. In practice, we have (3 at 500 mesh points in the interval
[0,1]. In the program, where required, values of 3 at intermediate

points are linearly interpolated, while values of B = B’ are obtained using

the Mean Value Theorem.
Having found ) , we are able to determine n. For |x| < 1, we have from

(A.2):
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n(x) = jg(\/1+|v|2 +U, vo+ 03 )dv + Aj—n U (x)
Using (A.5) and substituting in for U and ‘U.”, we have

n(x) = % [(1+A(1-x2)%)2 - 1]° + =@ 2(0[ (1 +A(1-x2)) 2 - 1]

3A
o= ({-x2 2.
on (1-x2)(5x2-1) for x| <1

and n(x) 0 for [x|=>1

Note also that the finite energy solution of the steady state RVM problem
also solves the steady state version of the modified problem, (RVM~),
with the condition ﬁg = 0. To show this, we write steady state (RVM~)

in integral form:

018)(? + (E+§M0)'Vv? =0

E1(x)

X
4n J p (y)dy

-0

Ea(x) -2nf j 2(y)dy

Bx) = -2n[ f i 2(y)dy - f j 2(y)dy]
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The requirement §2= 0 means

B(x) = -4n J j 2(y)dy

- 00

and the two problems are identical.

Appendix B: Rescaling to Achieve c=1

Suppose (f,E,B) is a solution of (RVM) for some value of c, i.e.
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af(tx,v) + Vidxf(tx,v) + (E1(tx) + cVaB(t,x))dv, f(t,x,v)

+ (E2(tx) - ¢1V1B(1,%))ay,f(tx,v) = 0

where p(tx) = I f(t,x,v)dv - n(x)
jitx) = I vi(t,x,v)dv

\

A
VFT———
Vi+c2jv|2

Ev(tx) = 4x [ p(ty)dy

NEa(tx) = -cB(tX) - 4mja(t,x)
B = -coxEa(t,x)

We re-scale as follows:

Let t=t x=cx, v=cv and define:

-
o~
:—0
x
<
—
I
o)
N
-y
—~
L
1
<
—
[}

c2f(t,cx,cv)
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LY

p(tx) = f f(t,x,v)dv - n(x)

Jc2f(t,cx,cv)dv - n(cx)

[ e2f(t,cx,w)c-2dw - n(cx)

[ ft.ex,w)dw - n{ex) = p(t.cx)

A A
- A= A \"
j(tx) = v f (t,x,v)dv where v .=
) ‘[ ( ) \/1+|v|2

A
= v c2f(t,cx,cv)dv

A
= j 302f(t,cx,w)c-2dw

Note that (cv) ey ;
ote that (cv) = = v,
V1+c-2c2|v|2
A
A A .
SO v=cl(cv) , andsince w=cv,
A
A A
v = c'w and we have

jtx) = [ ctwi(t,ex,w)dw

= clj(t,cx)
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Now define

X
Ei(tx) = 4n f p(t,y)dy

- 00

X
4r [ p(t.cy)dy

-0

CX
4 [p(t,z)c1dz

-00

CX
clan [p(t,z)dz

-00

c1Eq(t,cx)

Similarly, define
Ex(tx) = c'Ea(t,cx)

B(tx) = c'B(t,cx)

Then ( f,E,B) solves (RVM) with ¢ = 1. To show this, we first

demonstrate that -Ez and B are solutions of the one dimensional

Maxwell System:
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HE2(tx) + xBtx) = c1[0iEa(tex) + caxB(t,cx)]

c1[-4nja(t,cx)]
= -4nc4[c}2(t,x)]

= -47mja(t,x)

B(tx) + oxEa(tx) = c1[a1B(tcx) + coxEa(t,cx)]

We also have axE(t,x) = 41:B(t,x) by definition, and it remains to show

that the Vlasov equation with ¢ = 1 is satisfied. Toward this end, we

first compute

3 f(tx,v) = 3 c2f(t.cx,cv)] = c2dyf(t,cx,cv)
I Ftx,v) = dx[c2f(t,cx,cv)] = c3axf(t,cx,cv)
v, f(txv) = dylc2f(tex,ev)] = Bayfitexev),  i=1,2
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A A - -
o 3 fxy) + vidx Ftxv) + (Er(t.x)+v2B(tx))ay, T(t,x,v)

+ (-Ez(t’x)-c“-at,X))avz-f.(t,x,v)

c20if(t,cx,cv) + c-‘(cv1)A c3dxf(t,cx,cv)

+ (C'1E1(t,cx) + c*‘(cvz)A 0'1B(t,cx))c3av1f(t,cx,cv)

+ (c1Eaftex) - cl(eva)” o 1B(t,cx))e3dy,f(t,cx,cv)

c20¢f(t,cx,w) + c2v?'/axf(t,cx,w)
+ (c1Eq(tox) + c2WoB(t,cx))cdw, f(t.cx,w)

+ (c-‘Eg(t,cx) - c-2v°1B(t,cx))c3aw2f(t,cx,w)

Cz{(atf + Woxf + [(E + CQ1BMOV).wa)]} I(t cX, W)

Finally, we compute

NE1(tx)

at[c1Eq(t,cx)]

c191E1(t,cx)
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c[-4xji(t,cx)]

-4n[c-1ji(t,cx)]

H

-4rji(t,x), and as claimed,

= ( ?, -E -B) solves (RVM) with ¢ = 1.

We note here that the modified problem admits the same scaling. To see
this, suppose (f~, E, B ) solves (RVM~) for some value of ¢ > 1. Then the

Viasov equation and the expressions for p and 1~ are the same as those
in (RVM) with f, E and B replaced by f, E and B. In (RVM~), the

fields are given by
. 1r=~0 ~0 ~ ~
Ea(tx) = E[Ea(x-ct) + Eg(x+ct) + BO(x-ct) - BO(x+ct)] -

2n ~
= [ atty)dy

- 1~ ~ ~ ~
Bitx) = Z[Etx-ct) - Ejtxect) + Bo(x-ct) + Bo(x+en)] -

X

= | Tty = j 2(t.y)d

- 00

We define the following:
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F(t,x,v) := c2f(t,cx,cv)

n(x) := n(cx)
Btx) := f(tex)
}(t,x) = c-‘f(t,cx)

-E(t,x) .= c1E (t,cx)

!

(t,x) c! §(t,cx)

With these, we find

B(tx) = c'Ea(t,cx)

clr~ ~ ~ ~
= —2—[Eg(cx-ct) + Eg(cx+ct) + BO(cx-ct) - B°(cx+ct)] -

2n J':v
o2 Jia2(ty)dy

Since Eg(x) = éz(o,x) = c-1E~2(O,cx) = c-1§g(cx), and a similar result
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holds for :B(x), we have
-Eg(t,x) = 32—[c-1E"§(c(x-t)) + c1Eo(c(x+t)) + c1BO(c(x-1)) - c1BO(c(x+t))]

2n ~
Y I c-1ja(ty)dy

- - - - 2 .
—;—[Eg(x-t) v Eo(xat) + BO(x-t) - BP(x+t)] - —Cif c-17 o(t,cz)cdz

;_—[%:Z(x-t) + :E(;(xﬂ) + BO(x-) - B(x+)] - 2n -[ I 2(ty)dy

Similarly,

-é(t,x)

1E[c"lfg(c(x-t)) - c-1E~g(c(x+t)) + c1BO(c(x-t)) + c-1§°(c(x-t))]

CX oo
2n I ~ 2n J’ ~
- o Jetialtyldy + = ) clja(ty)dy
CX

-00

LBt - Edxet) + BOOct) + BP(xat)]

X o0

- 2 Jc-1 i 2(t,c2)dz + 2n Jc-1 i 2(t,czx)dz

-o0 X
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- LBy - Bxet) + B(xt) + B(x)]

X ©O

- 2z Ifz(t,y)dy + 2n J j2(t,y)dy

-00 X

and so (RVM~) with ¢ =1 is satisfied.
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